杨小凯 张永生:超边际分析的基本方法

——《新兴古典经济学与超边际分析(修订本)》第二章
选择字号:   本文共阅读 6190 次 更新时间:2024-06-30 17:28

进入专题: 超边际分析  

杨小凯 (进入专栏)   张永生  

2.1 什么是超边际分析


新兴古典经济学使用的基本方法是超边际分析。对于很多人来说,超边际分析可能是一个陌生的名词,从而会想当然地认为它一定非常复杂。事实并非如此。但凡接触过新古典经济学的人,一定熟悉边际分析的方法。超边际分析同边际分析既有相同之处,也有很多不同。在了解超边际分析方法之前,我们先举一个大家十分熟悉的例子,以对它的基本概念有一个直观的认识。


在生活中,人们通常会遇到很多在“是”与“否”之间的选择。比如:你在高中毕业时要填报志愿选择大学的专业,如果在经济学、化学、物理学3个专业中选择了经济学专业,这就意味着你在大学期间不会去听化学和物理学的课,但你会去听微观经济学、宏观经济学、计量经济学及其他一些经济学的选修课程。我们来看看这一选择过程中涉及的超边际分析问题。


先看专业的选择。选择经济学而不选择化学、物理专业,意味着对经济学说“是”,而对化学、物理专业说“否”。用超边际分析的术语来说,专业的选择属于超边际决策,其决策值在零和正值间非连续地变化。如果将你现在的生活同高中同学的生活相比较,你就会发现,现实生活中这种超边际决策不仅经常遇到,而且对一个人的生活道路往往更为重要。俗话说,“男怕入错行,女怕嫁错郎”,指的就是这个道理。再看选修课的选择。在选择了经济学专业后,你就要根据自己的时间、精力和每门功课的重要程度,决定在每门课程上分别投入多少时间。这是你非常熟悉的新古典边际决策问题,它也是超边际分析中的一部分。在这里,时间和精力是你的“成本”,而每门功课今后的作用就是你的“效用”,你会比较增加一个单位的成本会增加多少效用。当每单位成本产生的边际效用相等时,你在每门课上花的最佳时间和精力就达到最优。这种类型的决策属于边际决策,它是新古典经济学研究的重点。


你在决定选择经济学专业而放弃化学和物理学专业之前,一定会将经济学专业、化学专业和物理学专业做一个比较。这就要求先根据经验和个人的偏好,对每个专业进行成本和收益的边际分析,看每个专业可能产生的效用,然后比较哪个专业产生的总效用最大。如果你认为在这3个专业中,经济学专业会给你带来更大的收入和机会,那么最优决策就是经济学专业。所以,在超边际分析的模型中,第一步是对每个专业进行边际分析,计算每个专业(角点解)的效用,第二步才是比较每个专业的总效用,选择效用最高的专业,即做出超边际决策。类似这样的例子,在生活中比比皆是。这就说明,我们在生活中总是在同超边际分析打交道,只不过你以前不这么称呼它罢了。


在上面的例子中,你选择了经济学专业,这就意味着经济学专业的活动水平为“正值”,而化学、物理专业的活动水平为“零值”。但在经济学专业内,无论你在微观经济学课程上多花一点精力,还是少花一点精力,你的决策值都是“正值”。如果一个决策变量之最优值是其最大或最小值,最优决策之解就被称为角点解。因为专业的选择一般会对不从事的专业取其最小值0,这类决策常选角点解。如果所有决策变量之最优值在其最大和最小值之间,则最优决策就被称为内点解。


现在,你已经对超边际分析有了一个直观的认识。我们再进一步看看如何运用超边际分析方法进行经济学研究。假设社会由两个人组成,每个人必须消费两种产品,即食物和衣服。每种产品有3个变量:(1)自给自足量;(2)购买量;(3)销售量。两种产品就有6个变量。每个变量可取正或零值,则可能的决策共有64个。例如自给但不买卖食物(自给量为正,买量和卖量为零)且买衣服(自给量和卖量为零,买量为正)。这在数学中是个6变量的2组合问题,可能的角点和内点解的数量是26=64。其中有一个为内点解。如果有m种产品,可能的角点和内点解的数量是23m。其中m是产品数,3表示每种产品有3个变量,共有1个内点解。如果有3种产品,那么可能的角点解数量就达23×3-1,共有511个可能的角点解和1个内点解。如果产品数量再继续增加,则可能的角点解就会变成一个天文数目。


问题就出来了:如何才能从这511个甚至更多可能的角点解中找到最优解?马歇尔显然被这个问题难住了,他不知道如何去处理这个问题。在他那个时代,处理这类问题的非线性规划还没有发现;而要研究古典经济学核心的分工问题,又必须涉及对这些角点解进行超边际分析。在马歇尔的《经济学原理》第四卷第8—12章中,他对分工问题极富洞见,无奈却不能将这一问题进行数学化。最后,马歇尔就从这个问题上退却了,转而将精力集中到了边际分析。主流经济学的核心,也就从分工问题转向了给定分工结构下的资源分配问题。


马歇尔人为地将社会分为消费者和厂商两个隔离的部分,每个消费者必须将他的劳动卖给厂商,并从厂商那里购买所需商品。如果没有厂商,消费者就会饿死。厂商1专门生产食物,厂商2专门生产衣服,每个厂商根据边际成本和边际收益的原则决定最优生产量,从而构成厂商供给和需求函数。每个消费者在支出不超过收入的情况下,选择多样化的消费,使效用达到最大化,从而构成需求函数。供给函数和需求函数相互作用,就形成一个全社会的均衡价格,厂商和消费者根据这个均衡价格决定生产和消费水平。马歇尔假定每个厂商的生产没有内部递增报酬且边际效用递减。这样,马歇尔的问题就变成了一个单纯用边际分析求内点解的问题,从而也就使问题大大简化。但简化的结果却是,每个人不能选择专业化水平,经济学的解释能力也因此而大大降低。



2.2 如何进行超边际分析


马歇尔的边际分析当然无法用来分析分工问题。正如上一章提到的,直到20世纪50年代,才有了处理角点解的非线性规划方法,为超边际分析方法提供了数学工具。超边际分析要对每个可能的角点解进行比较,也就是说要进行总收益—成本分析,从而选择最优角点解。这是不是意味着,如果有两种产品,我们就要逐一计算63个角点解的最大值,然后进行总收益—成本比较?在现实世界中,单个的决策者会根据他面临的特定限制条件来解决这个非线性规划问题,但作为经济学家,如何才能解析地求解需求和供给函数?


这个长期困扰经济学理论界的难题,被杨小凯成功地解决了。1988年,他运用库恩—塔克定理,排除了一些非优化的可能解,从而将最优解的范围大大缩小。假如存在着专业化经济(意味着专业化生产比自给自足生产效率更高)和交易费用,则一个人绝不会同时购买和生产同一种商品,而且最多只卖一种商品,尽管他可以生产几种商品。我们将这称为文定理,因为文玫(1996)将这一命题推广到了一般准凹效用函数和非常一般的生产条件。文定理意味着,那些可能成为最优决策解的数目,比所有可能的角点解和内点解要少得多。


这样,超边际分析就可以分为3个步骤:第一步,利用文定理排除那些不可能是最优的角点解。第二步,对剩下的每一个角点解用边际分析求解,求出每一个局部最优值。第三步,比较各角点解的局部最大目标函数值,就可产生整体最优解。下面我们详细说明如何进行这3个步骤。


第一步 如何用文定理排除不可能最优的角点解。所谓文定理,是指“最优决策从不同时买和卖同种产品,从不同时买和生产同种产品,最多只卖一种产品”。文定理的直观意义十分清楚。比如,不同时买和卖同种产品。如果一个农民生产了5千公斤粮食,他会不会去到集市上卖掉1000公斤粮食,然后再买回1000公斤粮食呢?显然不会。因为这样做并不会增加他的效用;相反,他将粮食拖到集市上卖是要花成本的,买也是要花成本的,包括运输成本、讨价还价成本、时间的机会成本,等等,经济学上将这种非生产性成本统称为交易成本。如果买和卖同一种产品,只会降低它的效用,因此不是最优选择。再如,不同时买和生产同种产品。如果一个农民能生产粮食,他就不会去买粮食。因为购买自己能生产的粮食产生了不必要的交易费用。如果农民生产粮食,他应该用粮食换衣服,而不是用粮食换粮食。所以,同时买和生产同种产品不会是最优决策。又如,最多卖一种产品。如果一个农民同时卖粮食和衣服,是不是最优决策呢?也不是,因为生产中有专业化经济存在。如果一个农民花半年时间生产粮食卖粮食,然后又花半年时间生产衣服卖衣服,他就不如全年专业生产粮食或全年专业生产衣物(这里假定生产粮食不受季节的限制)。因为,如果全年专业生产粮食,他就不需要花时间和精力去学习如何做衣服,而可以将全部时间和精力放在提高种植粮食的技能上。这样,他的生产效率就会比非专业化地生产粮食的效率要高许多。也就是说,他如果同时生产并售卖粮食和衣物,不仅生产效率达不到最高,而且还增加了交易费用。如果交易费用超过专业化的好处,他的最优决策就是自给自足,即不卖任何东西。所以,同时卖两种或多种产品也不会是最优决策。但要注意,文定理在有资本市场或考虑到动态决策时不一定成立。例如,一个农民急需钱花,不得已只好先卖掉一部分口粮,等有了钱时再去购所需的粮食。


有了文定理,我们就可以将最优解的范围大大缩小。比如两种产品有63个可能的角点解的情况,如果用文定理进行排除,内点解永远不是最优的。我们实际上就只需考虑3种模式。第一种模式是,粮食和衣物两种产品都自给自足,没有交易行为发生。第二种模式是,专业生产粮食,用卖粮食的钱购买衣物。第三种模式是,专业生产衣物,用卖衣物的钱购买粮食。也就是说,一个人进行决策时,只会选择这3种模式中的一种。


再来看看,为什么其余60种角点解和一个内点解都不符合文定理,从而不可能是最优解。内点解意味着每种产品的买卖量同时为正,这显然违反文定理。我们随机从剩下的60种可能的角点解组合中抽取几种组合,来用文定理进行验证。如,有一种组合是,一个人同时生产粮食、买粮食、卖粮食、生产衣物、买衣物、卖衣物,这显然是不符合文定理的,不会是最优决策。再看一种组合:不生产粮食、买粮食、不卖粮食、不生产衣物、买衣物、卖衣物。显然不仅不符合文定理的最优决策,甚至也不可行。不生产衣物,何以有衣物可卖?不卖衣物,哪有钱买粮食?有兴趣的读者可以逐一对其余的角点解组合进行验证。


第二步 对剩下的每一个组合,用边际分析求解最优值。根据第1章中“经济学的科学方法”,我们先假定社会中存在着若干个决策前完全相同的个人(即消费者—生产者),每个人有一个效用函数、生产函数、时间约束及预算约束。假设有粮食和衣物两种产品,且效用是他实际消费的两种产品的乘积(即柯布—道格拉斯效用函数)。消费的粮食有两个可能的来源:要么自己生产,要么购买。如果购买粮食,则还要减去交易费用的损失。所以,交易效率就是一个十分关键的因素。在同等的条件下,交易效率越高,效用就越大。生产函数中,存在着专业化经济,即,每个人的专业化程度越高,其生产效率就越高,产出也越高。新古典生产函数描述的是投入与产出的技术关系,而新兴古典的生产函数描述的则是生产率与专业化水平的关系。时间约束表示,一个人生产粮食和衣服的时间加起来不能超过工作时间,比如,一天工作的时间极限是8小时。就是说生产粮食和衣物的时间加起来不能超过8。预算约束函数表示,售卖收入等于购买支出。就是说,如果卖掉1万斤粮食得到3000元的收入,那么买衣物的支出就不能超过3000元。


现在的问题就是,如何在满足生产函数、时间约束和预算约束的条件下,求效用函数的最大值。求解的方法并不复杂,将所有的约束条件代入效用函数,从而将有约束条件的效用最大化决策转化为求无约束最大化决策。这时候需要用到微积分求极值的方法,对无约束条件的效用函数求导,解出最大值。每一个角点解的最大值称为局部最优解。下面我们来看如何对某人选择自给自足、专业生产粮食或专业生产衣物3种模式求局部最优解。


模式1:自给自足生产粮食和衣物。如果生产粮食的时间增加,所增粮食产生的效用也会增加,但这必然要减少生产衣物的时间,从而减少衣物的效用。这就是自给自足决策模式面临的两难冲突。如何折中这种两难冲突?只有当增加粮食生产时间带来的边际效用增加等于减少衣物生产时间带来的边际效用减少时,两难冲突才能达到最优折中。在这个模式中,因为每人都自给自足,没有交易行为发生,也就没有市场存在,市场需求和供给都为零。


模式2:专业生产粮食,卖粮食,买衣物。这种模式中的两难冲突与模式1不同:当卖给市场的粮食增加时,自己留下消费的粮食就减少,所增粮食产生的效用也减少;但是,粮食卖得越多,收入也就越多,能够用来购买衣物的支出也越多,所增衣物产生的效用随之增加。最优决策就是在这两难冲突中权衡,找到效用最大化的最优折中。用来分析模式1的方法,同样适用模式2。这种最优折中的直感就是,对两难冲突进行有效率地折中,使有限资源在相互冲突的活动中进行分配,以使目标函数最大化。对这个目标函数求最大值的结果,可以解出角点供给函数、角点需求函数以及角点间接效用函数3个解析式(其大小取决于交易效率参数的大小及产品的相对价格)。


从这种两难冲突也可以看出,对衣物的需求函数是粮食供给的线性函数。这种需求与供给的关系,被杨格称为倒数需求律,它说明需求与供给是分工的两个侧面。当人们选择专业生产粮食时,同时就产生了对专业生产衣物的需求。所以,在考虑失业或其他供求不等问题时,不能将需求和供给割裂开来分析,而要把分工作为一个整体分析,看分工在何种情况下可能造成协调的困难。


模式3:专业生产衣物,卖衣物,买粮食。这种情况同模式2一样,结果只需将粮食和衣物相互对调。


通过分析这3种模式的间接效用函数,我们可以发现,角点间接效用函数随着所卖商品价格的提高而增加,而随着所买商品价格的提高而减少。这正好符合我们日常的经验,卖粮食的农民希望粮食涨价,而希望衣物减价。卖衣物的人则希望衣物涨价,粮食减价。也正如民谚所言,“棺材铺希望死人、医生希望大家生病”,因为这都会使此类商品的价格上升,使相关专家得到的好处增加。


第三步 比较上面得出的3个局部最大值,找出其中最大的一个局部最大值,即整体最优解。在上面3种模式中,哪一种的效用最大,决策者就会选择哪一种模式。但是,在我们的模型中,角点间接效用函数、角点供给函数和角点需求函数中有3个参数,即交易效率、粮食价格、衣物价格。这3个参数的值不同,计算出的效用也不同。这种研究参数变化时决策和均衡如何反应的工作就叫比较静态分析。所谓参数,它在一定场合是变量,而在其他场合是不变常数。例如,价格在我们分析决策时是不变常数,而在我们分析决策交互作用产生均衡价格时是变量。由于比较静态分析是研究环境(包括与制度环境有关的交易效率)参数变化对人们行为的影响,所以它是解释很多社会现象中因果关系的主要分析工具。下面我们来看看这种比较静态分析的结果。


当实际交易效率很高时,人们就会选择专业化,因为此时专业化的好处会超过交易费用,总会存在一个相对价格使得两个专业化模式产生的效用大于自给自足模式。如果交易效率低于某一临界值,交易费用就会超过专业化的好处,因此不存在一个相对价格使得两个专业化模式产生的效用大于自给自足模式,人们就会拒绝专业化,不参加市场活动,选择自给自足。


那么,如果选择专业化,一个人究竟会选择专门生产粮食,还是会选择专门生产衣物?这就要取决于粮食和衣物的相对价格。如果粮食的相对价格高于衣物,使得选择专业生产粮食的效用高于专业生产衣物,则没人愿意专业生产衣物;反之,没人愿意专业生产粮食。但是,劳动分工只有当两种专业都有人选择时才可能发生,因为分工不但意味着专业化,而且意味着不同专业的多样化。如果大家都去生产粮食,就没有人去生产衣物,分工也就不会发生。所以,均衡的结果,只有当粮食和衣物的相对价格使得选择专业生产粮食和专业生产衣物的效用相等时,分工才会发生。当价格满足这一条件时,人们就会发觉,专门生产粮食和生产衣物两种选择的真实收入其实差不多。


当然,这种真实收入相等的条件只有在人们天生相同且不考虑时间因素时成立,下文将要提到的分工造成的整数问题也可能使天生相同的人真实收入不等。但是,真实收入相等条件比粗看起来的适用性要广泛得多。例如,西方的律师收入比一般职业要高,但律师要交很高的学费并且要用很长的时间才能拿到律师学位(一般法学院是极少提供奖学金的),加上大家知道律师收入高,都想进法学院,竞争十分激烈,就要付出更大的努力。这种强大的竞争压力也有很大的负效用。如果将这些时间、努力、竞争压力、高学费算进去后,律师的真实效用和其他一般性职业的真实收入也就差不多了。正所谓,“一分付出,一分收获”,没有天上掉馅饼的好事。


在上面所做的超边际分析中,实际上包括两种类型的比较静态分析。第一种比较静态分析是,当交易费用和生产函数参数达到一定的临界值时,一般均衡、需求和供给以及间接效用函数会发生非连续性地跃变。当实际交易效率逐步提高并超过临界交易效率时,就会出现分工,市场也会从无到有。这种市场需求和供给由于分工水平的提高而出现非连续性的跃变,就是经济组织的一种拓扑性质的变化。


第二种是传统的决策问题的比较静态分析,即在一个给定的分工水平和模式下角点解如何对环境变化做出反应。如,粮食价格上升,则生产衣物的专家对粮食的需求就会下降。这种分析同新古典的基于边际分析的均衡的比较静态分析类似,它意味着均衡的相对价格、商品数量和个人售卖不同商品的数量会连续地变化。为简便起见,我们将第一种称为决策的新兴古典比较静态分析,而将第二种比较静态分析称为决策的新古典比较静态分析。总而言之,资源分配、相对需求、边际分析是新古典比较静态分析的特点,而专业化水平、市场大小的确定和超边际分析则是新兴古典比较静态分析的特点。



2.3 角点均衡及价格负反馈机制


正如上一章“经济学的科学方法”中提及的,经济分析不仅要分析个别决策人的自利决策,还要研究众多决策人自利行为之间的冲突及其交互作用。这种交互作用的后果,就是经济学家所称的均衡。所谓均衡是指自利行为交互作用下,产生了个别人不得不接受或无人愿意单方面改变的结局。它虽然经常与供求相等有关,但并不限于供求相等的情形。均衡也会出现供求不等或短缺现象,还会有失业。均衡也不一定是静止不变的,新兴古典经济学中就有很多动态均衡模型。


新兴古典经济学超边际分析是比较各个角点解的局部最大值,从中产生整体最优解,故超边际分析包括角点均衡和全部均衡两部分。新兴古典经济学的均衡概念与新古典经济学中均衡概念的差别是,它的每个均衡都是基于角点解,全部均衡是众多角点均衡(或称局部均衡)中的一个。每个角点均衡解决给定分工水平的资源分配问题,而全部均衡决定分工的水平和结构。由于新古典经济学中的全部均衡只解决资源分配问题,不能内生分工水平,故新兴古典经济学的每个角点均衡都相当于一个新古典经济学的全部均衡。因此,新兴古典经济学的全部均衡分析也就比新古典经济学的均衡有高得多的解释力。


我们下面来分析市场上的自利行为和交互作用及其后果。为此,我们需要先给出关于组织结构(或市场结构)的概念。所谓组织结构,就是指角点解形成的组合。前面提到的三个决策模式,就可以组合成两个组织结构,即一个自给自足的组织结构,一个有分工的组织结构。在第一种自给自足的组织结构中,没有市场、没有市价,人与人之间互不往来,“各人自扫门前雪,莫管他人瓦上霜”。第二种是存在分工的组织结构,由众多专业生产粮食并购买衣物的人同专业生产衣物购买粮食的人构成。在这种组织结构(市场结构)下,有两个市场,一个市场买卖粮食,一个市场买卖衣物。


每个组织结构都有一个角点均衡,每个角点均衡代表一组贸易品的相对价格(如果有贸易品的话),以及选择相关模式的人数。这一相对价格和人数满足如下条件:每人自由择业(在各个模式之间自由选择)将效用最大化,所有人的自由择业过程,使每种贸易品的市场需求等于市场供给,而价格由自由择业和供求相等条件确定。比如,生产粮食的人看到衣服的价格很高,他就可以自由地改行去专门生产衣服。


因此,第一种自给自足的组织结构中的角点解就代表这种结构的角点均衡,这种角点解是每个人根据粮食和衣物的效用此消彼长形成的最优折中。这种均衡决定他花多少资源生产粮食,花多少资源生产衣服,以达到效用最大化。而对于第二种有分工的组织结构,一部分人选择专门生产粮食,另一部分人选择专门生产衣物,择业自由和效用最大化行为会建立起供求相等条件,也有一个角点均衡。


在上面的模型中,如果每人喜好多样化消费和专业化生产(因为多样化消费意味着高效用,专业化生产意味着高效率),则一个人在其他所有人都选择自给自足时是无法专业化的,因为他卖不出他专业化生产的产品,也无法买到他要的其他专业产品。每个人对专业化水平的选择不但影响他自己的生产率,而且影响对其他人产品的市场,影响他人是否能专业化,从而影响他人的生产率。这被称为网络效应。如果所有人都选择专业生产粮食,但无人选择专业生产衣物,则即使专业生产粮食会产生很高的生产率,也会由于存在协调的困难而使这分工好处无法实现,因为人不可能只吃粮食而不穿衣服。市场竞争和择业自由会使得商品的相对价格同生产它们的专业的相对人数成反比。这就建立起了一种所谓的价格负反馈机制,保证价格使各行业效用相等条件的实现。


价格负反馈机制有两个环节。第一个环节意味着,如果生产粮食的相对人数下降,粮食的相对价格就会上升。如果粮食的相对价格高到无人愿意专业生产衣物而都想生产粮食,则粮食的供给就会很大,对粮食的需求则没有(因为只有专业生产衣物的人才会对粮食产生需求),对衣物则有需求没有供给。这样,粮食的价格就会下降,而衣物的价格会上升,最后二者的相对价格会使得专业生产粮食和专业生产衣物的效用相等。因此,并不会发生所有人只专业于生产粮食而造成分工无法实现的协调困难。第二个环节意味着,如果生产粮食的相对人数上升,粮食的相对价格就会下降,从而生产粮食的相对效用就会下降,生产粮食的相对人数又会下降。


这种负反馈调节会不断进行下去,直到供求相等、生产粮食和衣物的效用都相等,人们不再愿意转换行业时,市场就会达到角点均衡。在这种市场负反馈调节机制中,并不需要一个假想的瓦尔拉斯拍卖人来选择价格,整个价格机制完全是分权的而非集权的。众多的个人自由择业过程,决定了各种专业的相对人数,相对人数决定相对价格,而相对价格成为人们在专业之间变换的推动力。在这千万人无意的交互作用过程中,市价就形成了。



2.4 全部均衡及其比较静态分析


新兴古典的全部均衡是各个均衡中效用最大的一个。所谓全部均衡,是指一组贸易品相对价格和各个决策人所选的专业化水平和模式、资源分配满足以下条件:第一,在给定价格和选择各种模式的人数时,每个人选择专业化水平和模式使效用达到最大化。第二,相对价格和选择各模式的人数使供求相等,也使效用在一个结构的各模式间相等。这就意味着,在同一分工结构下,他无论是选择专业种粮食或生产衣物的模式,其效用都是一样的。这就是说,个人在角点之间的超边际分析,会使他们选择真实收入最大的模式。因此,当实际交易效率小于临界交易效率时,自给自足结构中的角点均衡是全部均衡;当实际交易效率大于临界交易效率时,则分工结构中的角点均衡是全部均衡。


如果所有的人都处于分工结构中,则角点均衡会通过价格机制达到。如果实际交易效率小于临界交易效率,即分工结构中的最大效用小于自给自足结构中的最大效用,则每个人会将自给自足中的效用与分工结构中的效用进行比较。比较的结果是,他们会马上离开分工结构。比如,如果餐馆的饭菜十分便宜,人们就会选择多上餐馆;但如果餐馆的价格十分昂贵,人们就会选择在家里自己做饭菜,分工水平就下降,从而对餐馆的市场需求也下降。因此,如果分工结构中的角点均衡产生的效用低于自给自足结构,则这种分工结构不可能是全部均衡。


你会问,如果所有的人都在自给自足的结构下,而实际交易效率又大于临界交易效率,即分工的效用大于自给自足的效用,但是自给自足时却没有价格,人们如何能从自给自足转到分工结构呢?答案是,虽然自给自足时没有市价,但是却有影子价格。这个影子价格由自给自足结构中粮食和衣物的相对最优比例决定。所以,按照这种影子相对价格,每人即使不知道分工时的市价,也能计算影子价格条件下分工的效用(当然,这种影子价格并不恰好等于分工时的市价,所以还可能会有选择分工时的协调困难)。实际上,在现实生活中,不管在任何相对影子价格下,都会有人想试一下分工结构中的某个专业。这种企业家的创新活动,使得社会能够进行各种各样的组织创新,为社会提供各种有价值的关于分工的信息。只要有一个人选择了专业生产粮食或专业生产衣物,其余的人就都会发现,选择专业化模式比自给自足的效用要大。于是,价格和自由择业的负反馈调节机制就会开始运作,分工中的角点均衡就会达到。而只要实际交易效率大于临界交易效率,就没有人会再愿意回到自给自足状态。我们在第10章中将详细介绍分工如何随时间的流逝而自发演进的故事。


你还会问,如果分工是个网络问题,则假设所有人最初都在自给自足状态,则社会选择分工必须所有人都同时跳到不同的专业去。如果有人跳,有人不跳,分工就不一定能实现。那么,分工是通过什么来协调的呢?如果没有看得见的手来协调市场网络的形成,我们怎能肯定自利行为一定会导致全社会的分工呢?我们要指出,很多证明市场失败、协调困难和市场无法有效利用网络效应的模型,都是以边际分析为基础的。那些模型中,决策者天真地死守那些不是效用最大化的角点解或内点解,因此就出现了多个均衡的情况,人们在多个均衡面前束手无策,不知选哪个为好。在新兴古典框架中,我们并没有这种协调的困难,因为每个人都会根据自己的具体情况很容易地做出超边际决策。虽然有很多角点解,但当事人却总能根据自己面临的限制条件选择最优角点解。因此,那些假想的市场失败、协调困难、不能充分利用网络效应问题,都是因边际分析方法的局限造成的,而不是真正的现实情况。


所以,我们实际上已经证明:当实际交易效率大于临界交易效率时,自给自足不可能是全部均衡。因为在任何相对价格下,都会有人愿意选择分工结构中的一个专业,而只要有一人开始这样做,分工结构中的角点均衡就会建立,再也没有人会愿意偏离这一角点均衡。也就是说,当实际交易效率高于临界交易效率时,分工结构中的角点均衡一定是全部均衡。


因此,我们得出一个重要定理:全部均衡是效用最大的角点均衡。同时,这一定理还产生了如下命题:当实际交易效率小于临界交易效率时,全部均衡是自给自足结构中的角点均衡;当实际交易效率大于临界交易效率时,全部均衡是分工结构中的角点均衡。


我们用图2-1来对此进行直观的说明。图2-1(a)代表自给自足的组织结构,在这一结构中,每个人同时生产粮食和衣物满足消费,不买也不卖,没有贸易发生。图2-1(b)代表分工结构,图中圆圈代表个人,x/y表示卖粮食买衣物,y/x表示卖衣物买粮食,带箭头的线条代表产品的流向。从图中不难看出,当交易效率从小于临界交易效率提高到大于临界交易效率时,全部均衡从自给自足跳至分工,各种经济变量会发生非连续性地跃变,粮食市场和衣物市场会从无到有,每个人的专业化水平从自给自足时的无专业化上升到完全专业化。所以,在自给自足时,人们在所有活动中的劳动生产率都是相同的,既没有比较优势也没有绝对优势。但在分工时,卖者的劳动生产率是1,而买者是0。这种买者和卖者之间选择不同专业后产生的生产率的差别,就是内生比较优势和绝对优势。



图2-1 自给自足与劳动分工


新兴古典的全部均衡比较静态分析告诉我们,市场上自利行为交互作用形成的最重要的两难冲突,是分工经济与交易费用的矛盾。当交易效率低时,分工的好处被分工造成的大量交易次数之费用抵消,所以在这种情况下自给自足是这种两难冲突的有效折中。而当交易效率高时,分工的好处就大于交易费用,分工就会是全部均衡。我们在现实中可以看到,凡是工业化比较发达的地区,其交通运输、通讯等设施都相对发达。中国有句流行的说法,“要想富,先修路”,也正好印证了这个道理。你可以想像,一个自然条件优越但交通、信息非常闭塞的地方,其经济多半是一种自给自足的小农经济。这种地方要实现工业化,首先必须改善交通、通讯状况。不然的话,就算有人投资兴建了工厂,但运输成本比其他地方生产的商品高出一大截,这个工厂肯定也无法生存下去,人们又会重新回到自给自足的状态。这可以解释为什么中国在贫困地区投资的很多扶贫项目难以成功。


现在我们比较一下最优决策的比较静态分析与全部均衡比较静态分析之间的差别。首先,在决策的比较静态分析中,价格和专家人数都是外生参数,用来解释资源分配、专业化水平和其他决策变量;而在全部均衡比较静态分析中,相对价格和专家人数是内生决定的,由其他环境参数所解释。其次,决策的比较静态分析只与个人的专业化水平及模式有关,因为一个人不能决定社会的分工水平与结构;而全部均衡的比较静态分析是决策交互作用的结果,所以与全社会的分工水平及结构有关。


值得注意的是,在新兴古典框架中,新古典的边际成本定价法则不一定成立。因为在上面的分工结构中,对于生产粮食的专家而言,生产衣物的边际成本为0,生产粮食的边际成本为无穷大。而在分工的结构中,粮食和衣物的相对价格是1,既不是0也不是无穷大。边际成本定价法则是新古典经济学边际分析的一个致命缺陷,它使递增报酬与市场竞争不相容,也使递增报酬出现时市场的有效性遭到质疑。科斯(1946)就指出,运用超边际分析时,报酬递增的行业就不会以边际成本定价,而会以总成本效益分析定价。新兴古典经济学的分析,则证实了这一论点。



2.5 非自由市场的超边际分析


自由市场最重要的功能不是分配资源,而是寻找最有效率的分工水平,而分工水平又决定市场网络大小、人们购买力高低、生产力高低、商业化程度以及贸易依存度。市场发挥这一功能的重要条件,一是择业自由,二是价格自由。我们来看看,如果不具备这两种条件,超边际分析的结果会是怎样。


第一种情况,有自由价格,但择业不完全自由。比如,农民进城不易得到长期户口,也不易得到住房。而银行、外贸、电信、汽车、新闻出版、医药、教育等行业,私人资本又不能自由经营。有些行业虽不限制自由进入,但由于缺乏相应的鼓励私人投资的资本市场、银行业等融资渠道,私人投资实际上仍然缺乏进入的自由。这种情况意味着,进入某些行业的专家人数是能被少数人操纵的,从而这一行业的价格就会上升,行业之间效用相等的条件就无法实现,就会出现行业之间贫富不均的现象。例如,在中国,同样是国有部门,但银行、电信等垄断经营部门收入就比其他部门高得多,很多人就都想找关系进入这些特殊部门就业。因此,要放开这些部门的自由经营,必然会遭到既得利益者的拼命反对。又如,中国电信由于政府垄断经营,非国有资本无法对其形成竞争,尽管其技术和设备十分先进,但其价格却几倍甚至数十倍于美国。在面对进入WTO的问题上,国有电信部门就会积极跳出来反对。这不是因为他们的技术和设备竞争不过人家,而是因为他们的垄断利益将要被打破。但应该看到,打破垄断的结果,绝不仅仅是市场份额的变化,更重要的是提高整个电信行业的效率,将“市场蛋糕”做大,这对国有电信也会带来长期的利益。因此,政府垄断一些行业,限制一些行业进入,但同时又放开自由定价,则有人就会从自利出发,限制本行业人数,使本部门收入不合理地上升。之所以说不合理,是因为这种操纵行业人数的行为会使有利的分工难以实现。因此,这种通过操纵一个行业人数造成的收入不均是反效率的,消除它的办法不是增加收入累进税程度,而是进行配套改革,不但要放开自由定价,而且要废止政府对资本市场和很多行业的准入限制,使各个行业都有充分的进入自由。


第二种情况,政府允许自由择业,但人为地歪曲价格。比如,将衣物价格定在一个不合理的高水平,而将粮食价格定在一个不合理的低水平。结果必然是,所有的人都想生产衣物,而没有人愿意生产粮食,马上就会使衣物出现过剩、粮食出现短缺。此时,中央不得不指令性地计划衣物的生产量,否则供求的极度失衡会使分工无法维持。因此,如果要实行价格控制,同时就必定还要实行数量控制。现实经济往往更加复杂,假如政府力图使自己成为一个大公无私的计划制定者,力图通过复杂的计算使行政价格接近市场水平,但由于比价关系十分复杂,政府实际上也无法达到这一目标。价格是市场力量交互作用的结果,不能依靠政府的管制来定价。否则的话,最有效率的分工水平就无法达到。


第三种情况,政府既控制价格,又用计划控制各部门人数。如果政府是一个大公无私的政府,希望通过中央的调节,使人民收入尽量平等,社会实现供求平衡,它往往会模拟市场均衡去调节各行各业的从业人数和各种产品的生产数量及价格。但是,这种情况是不可能实现的,只是一种存在于理想王国的美好幻想。因为,现实经济是极其复杂的,不仅涉及成千上万种产品的生产,单就人们无形的偏好来说,每个人效用最大化的条件都是不同的,你认为最好的,别人不一定认为最好。并且,众多偏好之间还存在着替代性,中央计划者不可能制定一个统一的标准使每个人都达到满意。再加上市场信息瞬息万变,中央计划者不可能掌握充分的信息去做出决策。因此,不仅中央计划者不能计算各种产品的价格和生产人数,就算能计算,也不能通过仁慈的方式来实现其理想目标。如果实行中央计划控制,最可能发生的情形是,相对价格及各行业人数都与市场解出的结果不同。这就会出现分工协调的困难,总是会出现短缺与过剩并存的现象。


更糟糕的是,如果政府官员从自身利益最大化出发制定政策,他们可能会使各种产品的相对价格达到各种行业收入均等化的水平,但却限制自己所在专业的人数。结果是,在这个价格下,此专业的产品供不应求,然后利用这种有利地位,通过物物交换间接地把本部门产品价格抬高。这既可以表面上维持收入平等的假象,又可以从后门和桌下的实物交易中增加实际收入。这种情况在前苏式经济中十分普遍,它对实现全社会的分工起着很大的阻碍作用,生产率也因此而难以提高。



2.6 超边际分析对经济学的影响


在前面的分析中,我们涉及了经济学实证研究的3个层次,没有涉及价值判断的问题。后者被称为规范研究,即对各种自利行为相互作用结果的福利意义进行分析。那么,什么样的结局对全社会而言才能称得上最优呢?大多数经济学家都同意,帕累托最优境界是对社会最优的状况。所谓帕累托最优,是指社会达到一种资源分配和分工结构时,不可能在不减少任何其他人效用的条件下再增加一个人的效用。前面提到的定理意味着,如果超边际分析中每个角点均衡是局部帕累托最优的,则全部均衡必定是帕累托最优的,因为全部均衡是每个人效用最大的角点均衡。这也是所谓第一福利定理的内容。


对新兴古典框架内的第一福利定理的严格证明,可参见周林、孙广振和杨小凯的文章(Zhou,Sun,and Yang,1998)。此文证明,即使人们天生不同,全部均衡不但存在,且是帕累托最优的。他们建立了一个更一般的新兴古典模型,该模型没有清楚地指明效用函数和生产函数,它可以使内生比较优势和外生比较优势同时存在。因此,个人可以有事前不同的特点。这个一般均衡存在性定理使超边际分析可以应用到更多的模型中去。同样,一个更强版本的文定理和第一福利定理也已被姚顺天证明。这就为新兴古典经济学建立了一个非常坚实的理论基础。


因为新兴古典经济学用的是超边际分析,所以局部帕累托最优意味着,对于一个给定的分工结构,局部均衡的资源分配是有效率的。因此,局部帕累托最优又被称为最优资源配置,而整体帕累托最优包括最优资源配置和最优分工结构两部分。所以,在新兴古典经济学中,第一福利定理不但意味着市场竞争能有效地分配资源,而且能选择有效的分工结构。


在新古典经济学中,帕累托最优(效用最大化)与生产可能性边界是相吻合的,效用最大化同时意味着生产力最大化。但是,新兴古典经济学却不是这样。在新兴古典的框架中,由于不同的分工水平产生了不同的生产转换函数,生产可能性边界是最高的那条转换曲线。分工水平越高,生产力越靠近生产可能性边界。但由于存在着分工好处与交易费用的两难冲突,在交易效率不高时,效用最大化的帕累托最优不会是最高分工水平。因此,在新兴古典的框架中,帕累托最优不一定与生产可能边界吻合。而当交易效率改进时,帕累托最优和市场均衡会越来越接近生产可能性边界。这意味着,交易效率是市场生产力的推动力量,是流通效率决定着生产力的水平。当交易效率改进时,可以通过提高生产力而减少稀缺性。也就是说,由于分工的发展,同样的资源可以用来生产更多的产品。所以,经济增长和发展问题是新兴古典经济学题中应有之意,而不需要另外的增长理论和发展经济学来处理。


为了进一步了解市场决定最优分工水平和结构的功能,我们现在对纯组织效率进行定义。所谓组织效率,是指给定产品的相对生产消费量的情况下,分工水平和结构达到最优。而资源配置效率则与之相反,指的是在给定分工结构下,各种产品的相对消费和生产量达到最优。比如,在自给自足结构中如何达到效用最大化,就是最优资源分配的问题。我们假设生产和消费1万公斤粮食和100件衣物能使社会达到效用最大化,那么按这一比例进行投入就是自给自足状态下的最优资源分配。在分工结构中,最优资源分配的结果可能是1.5万公斤粮食和150件衣物。而组织效率问题则不同,如果要生产消费一定量的产品,在交易效率小于某一临界水平时,自给自足是最优组织结构;而在交易效率高于此临界水平时,则分工是最优组织结构。因此,组织效率一般与生产力的变化有关,而资源分配效率则是给定生产力(或稀缺性)时对相对生产量和消费量的最优折中。更重要的是,组织效率与有效率的市场网络规模有关。在我们新兴古典的框架中,市场最重要的功能并不是分配资源,而是寻找最优市场网络规模,尽量利用分工的网络效应,使社会生产力增加,从而减少稀缺性。


可以看出,组织效率、分工水平、市场网络规模这些概念,同总量需求和宏观经济学有关。而资源分配效率、产品的生产消费量、相对价格这些概念,则与新古典微观经济学有关。因此,在新兴古典经济学中,宏观、微观经济学分析是一个统一框架中的两个层次。在这个框架中,角点均衡的分析解决传统的微观经济学问题,而全部均衡则解决传统的宏观经济学问题。


进入 杨小凯 的专栏     进入专题: 超边际分析  

本文责编:陈冬冬
发信站:爱思想(https://www.aisixiang.com)
栏目: 学术 > 经济学 > 经济思想史
本文链接:https://www.aisixiang.com/data/138953.html

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2024 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统